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ABSTRACT: The stability of hierarchical lamellar morphologies
formed in ABC star triblock copolymers, is studied using the
self-consistent mean-field theory. The hierarchical lamellae con-
sist of repeating period of the largest block A-formed layer and
B/C coformed layer where B and C domains are arranged alter-
natively. An angle, which is used to characterize the shifting
magnitude between two neighbor B/C coformed layers, varies
from 0 to 180 degrees. By comparing the free energy among
the lamellar morphologies with various shift angle, their rela-
tive stability is analyzed. Our results show that the morphology

with larger shift has lower entropic energy and higher internal
energy. In general, the morphology with the largest shift of 180-
degree is stable compared with those with smaller shift as the
entropic energy dominates the internal energy. However, the rel-
ative stability can be tuned by the interactions among the three
components as well as their relative compositions. PACS num-
bers: 61.25.Hq, 64.60.Cn, 64.75.+g. © 2010 Wiley Periodicals, Inc.
J Polym Sci Part B: Polym Phys 48: 1101–1109, 2010

KEYWORDS: phase behavior; self-assembly; theory

INTRODUCTION Block copolymers have attracted a lot of

attentions due to their ability to self-assemble into rich

nanoscale ordered morphologies. This property make them

candidates for wide potential applications including litho-

graphic templates for nanowires, photonic crystals, and high

density magnetic storage media.1 As the simplest model

of block copolymers, diblock copolymer has been exten-

sively studied both by experiments2–4 and by theories.5–8

There are two factors influencing the phase separation of

diblock copolymers: the composition f of one species and the
product �N of the polymerization N and the Flory-Huggins

parameter � which characterizes the interaction between

dissimilar monomers. Because of its simplicity, its self-

assembling behavior have been understood well. The classical

mesophases formed by diblock copolymers include lamellae,

cylinders, spheres and gyroid.6 In addition, O70 phase (Fddd,
orthorhombic network) is determined as a stable phase with

a small region surrounded by cylinder, gyroid, and lamellar

phases.9,10

With the development of synthesizing techniques, it is possi-

ble to make more complex block copolymers through different

methods. One way is to add more chemical components into

the copolymer, another way is to add more blocks onto

the chain without introducing new components (such as

two-component ABA triblock copolymer), and the third way

is to control the architecture of the chain for multiblock

copolymers. For example, adding a block composed of a new

component of C onto an AB diblock copolymer chain leads to

ABC triblock copolymers. Furthermore, there are many can-

didates of topological architectures: linear, star and so on.

In the linear one, the three blocks have different aligning

sequences. In the ABC star triblock copolymers, one end of

each block is jointed together. For three-component block

copolymers, a lot of possible multiblock copolymers can be

synthesized by adding more blocks. The phase behaviors of

ABC triblock copolymers are much more complicated than

that of AB diblock copolymers. The parameters influencing

the bulk phases increase from two to five including three

interaction parameters �ABN, �ACN, �BCN and two independent
volume fractions fA and fB. In another word, their phase dia-
grams become five dimensional. Exploring the whole phase

diagrams in this parameter space is a formidable task. How-

ever, by varying the five parameters, many interesting ordered

microstructures can be observed, or some two-dimensional

phase diagrams can be explored by fixing three of the five

parameters. The linear triblock copolymer melts are likely to

form novel decorated phases, such as spheres on spheres,

spheres on cylinders, rings on cylinders, and cylinders in

lamellae, with �AC < �AB < �BC; core-shell versions and alternat-
ing versions of those phases observed in diblock copolymers

with �AB ≤ �BC < �AC; and phases spanning the range of phases
between those in above two cases.10
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The self-assembly of the star triblock copolymer melt is very

different from that of the linear one. A lot of experiments have

been done to study the formation of morphologies11–23 since

the first three-miktoarm star copolymers were synthesized in

1992 by Iatrou and Hadjichristidis24 and by Fujimoto et al.25

In 2002, a comparable systematical research was carried on

the self-assembling of a series of ABC star copolymers of the

type AxB1.0C1.0 with a wide x range from about 0.2 to 25 using

Monte Carlo simulations by Gemma et al.26 They proposed

that cylindrical phases of polygonal-tiling patterns, with the

three-arm junctions aligning on a straight line, are formed

when the three components are immiscible and the three

arms are long enough to give stable three-phase structures.

For x increasing from about 0.4 to 2.5, the sequence of these

two-dimensional (2D) polygonal structures is [8.8.4], [6.6.6],

[8.6.4:8.6.6], [10.6.4:10.6.4; 10.6.6], and [12.6.4] (these integer

numbers indicate the side numbers of these polygons). These

microstructures were observed in a serial experiments,27 and

some of them were seen in the dissipative particle dynam-

ics simulations (DPD) by Huang et al.28 When x is between
3 and 5, a structure of Lamella+Cylinder was observed. This

structure can be seen as a hierarchical lamellar phase com-

posed of A layer and B/C-layer, in which the B and C blocks

further separate to form B/C repeating domains. Two lengths

are required to characterize the structure: one is for the B/C

domain repeating spacing (denoted as L1), and the other is
for the distance between two neighbor A layers (denoted as

L2).29 This structure was also observed in ABC star copoly-
mers with the ratios of the three arms 3 : 1 : 1 by Tang et al.;30

and with three equal length arms and three different interac-

tions by Wang and coworkers31 and in the blends of ABC star

copolymers and homopolymer by Liang’s group.32 In this hier-

archical lamellae, two neighbor B/C-layers can have different

ways of arrangement by varying the relative positions of B or

C domains. In the Figure 12(b) of ref. 26 the B and C domains

in two neighbor B/C-layers are arranged synchronously; how-

ever, they are arranged in the complementary position in ref.

30. For the former case, the shift of two neighbor B/C-layers

is zero, and for the latter case, the shift is a half of the period

of L1. Both arrangements were seen in the work of Liang’s
group.32 Two questions can be asked about these phenomena.

Which arrangement of B/C domains is preferred by this hier-

archical lamellar phase? And, can the stable morphology have

other B/C domain arrangements besides the above two?

To answer these questions, we focus in the present work on

the study of the stability of the hierarchical lamellar phase

with different arrangements of B/C domains. We refer the

shift of the arrangement to an angle varying from zero (none

shift) to 180 degrees (the largest shift, or L1/2 shift). Our

study is carried out by using self-consistent mean-field the-

ory (SCMFT) which is one of the most successful methods

on the study of block copolymers6,33,34 since it was applied

to this field.5,35,36 In particular, SCMFT can determine the

relative stability of different phases because it can calcu-

late the free energy accurately. According to the schemes

of solving the modified diffusion equations of the propaga-

tors, a few methods have been developed. One of successful

methods, the spectral method, is very successful on determin-

ing phase diagrams as it has high accuracies with free energy

calculations when the symmetries of phases are known.6

Very recently, Guo et al. have proposed a developed spec-

tral method which can be used to look for new structures

as the real-space method does.37 This new spectral method

requires many basis functions for accurate calculation of free

energy. This restricts its application on the determination

of phase diagram. Combining the developed spectral method

with the tranditional spectral method may be a reasonable

choice to determine phase diagram: the former is used to

look for new structures and to determine the symmetries

of found structures, and then the latter is used to calculate

the free energy accurately of these structures with deter-

mined symmetries by the former. In the current study we

apply another method, the real-space method proposed by

Drolet and Fredrickson.7 The pseudo-spectral scheme of real-

space method, which is developed by Tzeremes et al.,38,39 is

used to solve the modified diffusion equations. This operator-

split algorithm as a second-order method (OpS2) has high

effieciency, and can be readily parallized by using FFTW pack-

age to do the fast-fourier transformations. The real-space

method is convenient to obtain structures with varying shift

for the hierarchical lamellae by using various initial condi-

tions. However, confident accuracy of the free energy in the

real-space method requires high-degree discretization on the

chain contour length. Fortunately, a newly proposed fourth-

order backward-differentiation-formula scheme (BDF4) based

on the operator-split algorithm allows reasonable discretiza-

tion (�s = 0.001) for enough high accuracy of free energy.40

We also use this BDF4 scheme as a reference to justify the

reliability of our results obtained by OpS2.

THEORY

We consider an incompressible melt of ABC star triblock

copolymers with a degree of polymerization N in a volume

of V , and the chain lengths of A, B, and C blocks are fAN, fBN,
and fCN (fA + fB + fC = 1), respectively. Spacial lengths in our

calculations are expressed in units of the radius of gyration,

Rg, of the polymer. Within the mean-field approximation to the
many-chain Edwards theory,34,35 at a temperature T , the free
energy F for n Gaussian triblock copolymer chains

F
nkBT

= − lnQ + 1

V

∫
dr{�ABN�A(r)�B(r) + �ACN�A(r)�C(r)

+ �BCN�B(r)�C(r) − �A(r)�A(r) − �B(r)�B(r)

− �C(r)�C(r) − �(r)[1− �A(r) − �B(r) − �C(r)]}.
(1)

where �A, �B, and �C are the monomer densities. The parti-

tion function Q is for a single polymer chain interacting with
the mean fields �A, �B, and �C produced by the surrounding

chains. The interactions among the three dissimilar monomers

are characterized by three Flory-Huggins interaction param-

eters, �AB, �AC, and �BC. Minimization of the free energy with
respect to the monomer densities and the mean fields leads

to the following standard mean-field equations34
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�A(r) = �ABN�B(r) + �ACN�C(r) + �(r)

�B(r) = �ABN�A(r) + �BCN�C(r) + �(r)

�C(r) = �ACN�A(r) + �BCN�B(r) + �(r)

�A(r) = 1

Q

∫ fA

0

ds qA(r, s)q
†
A(r, s)

�B(r) = 1

Q

∫ fB

0

ds qB(r, s)q
†
B(r, s)

�C(r) = 1

Q

∫ fC

0

ds qC(r, s)q
†
C(r, s)

Q= 1

V

∫
dr qK(r, s)q

†
K(r, s)

�A(r) + �B(r) + �C(r) = 1 (2)

In the above equations, qK(r, s) and q
†
K(r, s) (K=A, B, C) are

end-segment distribution functions which have standard def-

initions.34 These distribution functions satisfy the modified

diffusion equations

∂qK(r, s)
∂s

= ∇2qK(r, s) − �K(r, s)qK(r, s) (3)

−∂q†K(r, s)
∂s

= ∇2q†K(r, s) − �K(r, s)q
†
K(r, s) (4)

The initial conditions are qK(r, 0) = q†L(r, 0)q
†
M(r, 0), where

(KLM) ∈ {(ABC), (BCA), (CAB)}, and q†K(r, fK) = 1. For numer-

ical solution, we employ the pseudo-spectral method38,39 or

the fourth-order implicit-explicit real-space method40 to solve

the modified diffusion equations for the end-segment distri-

bution functions. In our calculations, the ABC star copolymer

chains are put in a rectangle box with sizes of Lx × Ly as the
considered hierarchical lamellar structure is two-dimensional,

and the lamellae are aligned along one side of the box by using

appropriate initial conditions. In the two real-space methods,

periodic boundary conditions are imposed automatically on

the two directions of the box. In our 2D SCMFT calculations, a

lattice of Nx × Ny = 128× 128 is used to discretize the space,

and the chain contour length is divided into Ns points.

In this work, we first use various initial conditions to generate

a set of hierarchical lamellae with varying shifts as solutions of

the mean-field equations. Once we determine the set of struc-

tures, we then use these structures as initial conditions in our

algorithm to obtain their free energy which is used to identify

their stabilities.

RESULTS AND DISCUSSION

As our investigation focuses on a star triblock copolymer

melt which forms hierarchical lamellar phase in the bulk, we

choose its volume fractions as fA = 0.6 and fB = fC = 0.2 in

the whole work except for some places where specific illus-

trations are given, and we fix �AB = �AC to give prominence
to the main effects which influence the relative stability of

these morphologies. The density profiles of nine typical hier-

archical lamellae with varying shifts (0, 22.5, . . . , 180 degrees)

are shown in Figure 1. Three colors of red, green, and blue,

correspond to the phase regions where the main component

is A, B, and C, respectively. Here the shift is characterized by a

shift angle which is proportional to the magnitude of the shift.

The zero-degree shift means that all of B/C layers have syn-

chronous arrangements of B/C alternative domains, and the

180-degree shift means that two neighbor B/C layers have

complemental arrangements. The morphologies of zero-shift

and 180-degree-shift can be produced with random initial con-

ditions, and the others are obtained by shifting one of every

two B/C layers of the two known morphologies with a given

shift. On this view, these morphologies with the shift angle

between zero and 180 degrees are artificially made. Note that

the basic units of the morphologies are not a parallelogram

except for that of the 180-degree-shift one, but a rectangle.

This is the reason that a rectangular box is used in our calcula-

tions. The discussion of the triclinic basis of the unit cell can be

found in ref. 41. For this hierarchical lamellar morphology, two

lengths of L1 and L2 are used to characterize the periodicity in
two directions. In fact, the period of the morphologies except

for the zero-shift one along the y direction is 2L2 because the
two neighbor B/C-layers are distinguishable. The free energy

of each structure is minimized by adjusting the box sizes Lx
and Ly (or the two periods) carefully to ensure its high accu-
racy. For the 180-degree-shift morphology, the free energy is

also minimized indirectly by the angle between the two basic

vectors of the parallelogram because it is determined by the

sizes of L1 and L2. We find that the two periods are hardly
dependent on the shifting magnitude when the compositions

and interactions of the copolymer are fixed. In Figure 1, their

periods are L1 ≈ 2.533Rg and L2 ≈ 4.265Rg.

To show the symmetries of the morphologies in Figure 1,

the Fourier spectrums |�k(q)| (k = A, B) are calculated, and

are present in Figure 2. The radii of filled circles are pro-

portional to their intensities. As the spectrum |�A(q)| is
almost independent on the shift angle of the morphology, only

that of zero-shift is given in Figure 2(a). The spectrum plot

suggests that it is a typical lamellar morphology. The spec-

trums |�B(q)| of the morphologies with 0-, 45-, 90-, 135-,

and 180-degree shifts, are shown in Figures 2(b–f), respec-

tively. Obviously |�B(q)| vary as the shift angle varies. For
the zero-shift morphology, the peak positions of the Fourier

spectrum indicate that the unit cell is a rectangle of (L1, L2)
which is consistent with the density plots in Figure 1. When

the shift angle increases from zero, the basic vector becomes

(L1, 2L2) from (L1, L2), and the unit cell contains two distin-
guishable grid points. The apostrophe on the digits is used

to distinguish the crystal faces from those in (b). There is

a phase difference between the contributions from the two

points to the spectrums. The multiple factor induced by the

phase difference is proportional to | cos[(h� + k�)/2]| when
q= (2h�/L1, 2k�/2L2), where � is the shift angle, and h and k
are the indices of the crystal face. With the expression of the

multiple factor, the intensities of these peaks in the spectrum

plots from (c) to (f) can be understood readily. In Figure 2(c),

the peak of 1′1′ appears with a weak intensity determined
by the factor of | cos[(�/4 + �)/2]| ≈ 0.383, and the peak of

1′0′ has a decay compared with that of Figure 2(b). When

� increases to be 90 degrees, the peak intensity of 1′1′ is
comparable with that of 1′0′ in Figure 2(d). And, eventually, the

HIERARCHICAL LAMELLAR MORPHOLOGIES, XU ET AL. 1103
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FIGURE 1 Monomer density plots of hierarchical lamellar morphologies with various shifts for fA = 0.6 and fB = fC = 0.2. The colors
of red, green and blue, indicate the regions where the most component is A, B, and C, respectively. The lamellae are aligned along
the box side on the x direction, and the other side of the box is set on the y direction. On the density profile of 180-degree, the repeat
spacing of B/C domains is denoted as L1, and the distance between two neighbor layers is characterized by L2. The two lengths L1 and
L2 of the morphology are hardly dependent on the shifting magnitude. The shift is refered to an angle varying from 0 (none shift) to
180 degrees (the largest shift, or the shift of L1/2). The morphologies of shift angles, 0, 22.5,…, 180 degrees, are shown.

FIGURE 2 (a) The typical Fourier spectrum of the densities �A(r ), which is almost independent on the shift angle of the morphology.
The pictures from (b) to (f) are the Fourier spectrums of the density profiles �B(r ) of the morphologies with shift angles of 0, 45, 90,
135, 180 degrees, respectively.
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peak of 1′0′ disappears when � = 180◦ in Figure 2(f). And

accordingly, the unit cell has changed to be a parallelogram.

As the free energy of the morphology varying on the shift, a

free energy difference, defined as the value of the free energy

of a morphology subtracted by that of the 180-degree mor-

phology, �F , is used to identify the relative stability among
these morphologies for the reason of more intuitional than

the free energy itself. The free energy of these morphologies

in Figure 1 together with their differences to that of the 180-

degree morphology for �ABN = �ACN = �BCN = 60 are present

in Table 1. We can see that the free energy difference is as

tiny as 10−7. This suggests that the value of the free energy
difference is possible smaller than the accuracy of free energy

in the real-space numberical SCMFT calculations. So it is nec-

cessary to check the reliability of the data of the free energy

difference. As we know, the discretization on the chain contour

length is the main factor influencing the accuracy of the free

energy compared with the discretization on the real space.40

In this work, a lattice of 128×128 is used for the real space. In
our calculations, we find that the free energy changes much

less when we enlarge the lattice to be 256 × 256 than that

induced by the increasing of the discretization from Ns = 500

to 2000. Therefore we focus our attention on the influence of

Ns on the free energy difference. A rigorous method is to cal-
culate the free energy of each morphology for a series of Ns,
and then to predict the free energy F∞ of Ns = ∞ by doing

extrapolation. Finally, with the values of F∞ of these mor-

phologies, we can compute the free energy difference without

the influence of the discretization Ns. In practice, this method
is very time-consuming. Here two simpler ways are used to

estimate the reliability of our results. One way is to increase

Ns = 500 to 2000 for the OpS2 scheme to see how big the

change of the free energy and the change of the difference

are. Table 1 shows that the absolute value of the free energy

changes significantly, but that of all morphologies has a similar

increment of 6.6 × 10−4. The free energy difference is hardly
influenced for all morphologies though the increment is much

bigger than it. The other way is to use the BDF4 scheme with

higher accuracy for the same value of Ns. We calculate the free
energy of morphologies with Ns = 2000 (see Table 1). Our

results show that the discrepancy of the free energy between

OpS2 and BDF4 for Ns = 2000 is about 4.4 × 10−5, and the
change of the free energy difference is negligible, too. Fur-

thermore, we also do the similar checks for another group

of interactions, �ABN = �ACN = 40, and �BC = 60. The absolute

value of the free energy have the similar tendency as that of

�ABN = �ACN = �BCN = 60 for three cases: Ns = 500 (OpS2),

Ns = 2000 (OpS2), and Ns = 2000 (BDF4). Though the free

energy difference, becomes much bigger (order of 10−5), its
error is still small. The above discussions suggest that the free

energy difference obtained by the OpS2 method with Ns = 500

are reliable. To reduce the computing time, the OpS2 method

with Ns = 500 is applied for all of other calculations in this

work.

For the reason of visualization, the free energy differences

as a function of the shift angle for �ABN = �ACN = 60 and

�ABN = �ACN = 40 with the same �BCN = 60 are plotted in

Figure 3(a,b), respectively. That these symbols of the three

cases are almost overlapped proves that the results obtained

by Ns = 500 (OpS2) are reliable, too. In addition, the curves of

�F/nkBT are a consistent function without obvious stochastic
errors. For �ABN= �ACN= �BCN= 60, there are two properties

with the curve. One property is that the free energy has dif-

ference as tiny as an order of 10−7 among these morphologies
with various shifts. The other is that there are three extrema

on the curve, and the minimal point is located at neither zero

nor 180-degree shift, but at around 112.5-degree shift. This

means that the stable morphology with a special shift angle

between zero and 180 degrees is noncentrosymmetric. For

�ABN = �ACN = 40, the magnitude of the difference increases

to be an order of 10−5. We can find a common characteristic
from the two figures that the morphology with 180-degree

shift has lower free energy than that with zero shift. However,

the number of extrema decreases to be two in Figure 3(b). This

tells us that the morphology with 180-degree shift is stable

instead of that with an about 112.5-degree shift in Figure 3(a).

The comparison of the two figures reveals that the interaction

parameters of �AB and �AC influence the free energy differences
among these morphologies with various shifts, and therefore

change their relative stabilities.

TABLE 1 The Data of Free Energy Obtained by Two Numerical Schemes of OpS2 and BDF4 for �ABN = �ACN = �BCN =60

�F
nkBT

(×10−7) �F
nkBT

(×10−7) �F
nkBT

(×10−7) F
nkBT

F
nkBT

F
nkBT

OpS2 OpS2 BDF4 OpS2 OpS2 BDF4

Shift Ns =500 Ns =2000 Ns =2000 Ns =500 Ns =2000 Ns =2000

0 6.99 6.99 7.00 11.017270602 11.017928162 11.017972663

22.5 5.99 5.99 6.00 11.017270502 11.017928062 11.017972563

45 3.49 3.48 3.50 11.017270252 11.017927811 11.017972313

67.5 0.62 0.62 0.63 11.017269965 11.017927525 11.017972026

90 −1.43 −1.43 −1.42 11.017269760 11.017927320 11.017971821

112.5 −2.05 −2.05 −2.04 11.017269698 11.017927258 11.017971759

135 −1.45 −1.45 −1.44 11.017269758 11.017927318 11.017971819

157.5 −0.46 −0.46 −0.46 11.017269857 11.017927417 11.017971917

180 0 0 0 11.017269903 11.017927463 11.017971963
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FIGURE 3 The free energy difference as a function of the shift angle (a) for �ABN = �ACN = �BCN = 60 (same as Table 1); (b) for
�ABN = �ACN =40, and �BCN =60. The connected lines are guides to the eye.

To understand the dependence of the free energy on the shift,

we seperate the free energy into two parts: internal (U) and
entropic (−TS). The internal and entropic contributions to the
free energy can be expressed as8

U
nkBT

= 1

V

∫
dr

[
�ABN�A(r)�B(r)

+ �ACN�A(r)�C(r) + �BCN�B(r)�C(r)
]

− S
nkB

= − lnQ − 1

V

∫
dr

[
�A(r)�A(r)

+ �B(r)�B(r) + �C(r)�C(r)
]
. (5)

�U and −T�S, the corresponding parts of the free energy
difference, are shown in Figure 4 together with �F . The two
figures reveal that themorphology with smaller shift has lower

internal energy but higher entropic energy. The lower internal

energy for smaller shift can be interpreted by the weak interfa-

cial energy between two neighbor B/C-domain layers as they

are separated by an A-domain layer. The interfacial energy

becomes weaker when B (or C) domains in one layer face same

B (or C) domains in its neighbor layers. So small-shift morphol-

ogy is favored by the contribution of the internal energy. On the

other hand, the entropic energy becomes higher for smaller-

shift morphology. It is known that the entropic contribution is

mainly from the chain stretching which is usually attributed

to the domain sizes. However our calculations suggest that

the domain sizes are almost independent on the magnitude

of the shift for fixed interaction parameters. It means that the

difference of entropic energy is from a secondary contribu-

tion. The competition between the two factors, which have

opposite tendency for varying shift, determines the relative

stability of these morphologies. In Figure 4(b), as the entropic

energy dominates the free energy over the whole range of the

shift, the morphology with the largest shift of 180-degree is

stable. In Figure 4(a), the dominance of the entropic contri-

bution over the internal contribution is reduced by increased

value of �AB = �AC. The combination of the two contributions
leads to a stable morphology with an about 112.5-degree shift.

According to the discussions, we can see the free energy

difference as a secondary effective interaction between two

neighboring B/C-layers. The dependence of the free energy

FIGURE 4 The internal and entropic parts of the free energy difference as well as itself as a function of the shift angle for (a)
�ABN = �ACN = �BCN =60; and (b) �ABN = �ACN =40, and �BCN =60.
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FIGURE 5 (a) The free energy difference as a function with respect to varying shift angles for �ABN = �ACN = 30, 40, 50, 60, 80, 100 and
fixed �BCN = 60. (b) The free energy difference between the two morphologies of zero shift and 180-degree shift, �F0,180/nkBT , for
various values of �ABN = �ACN .

difference on the interactions of �AB = �AC can be explained by
the change of the interacting distance between two neighbor

B/C-layers. Because the interfacial areas between A and B/C

domains are decreased to reduce interfacial energy resulted

by increased �AB = �AC, the interaction distance between two
B/C-layers, that is, the domain size on the direction per-

pendicular to the lamellae, is increased. In consequence, the

effective interaction is weakened by the increased interact-

ing distance. To show the effect more systematically, the free

energy difference of a few groups of parameters �ABN= �ACN
for fixed �BCN = 60 are calculated. In Figure 5(a), the curves

of the free energy difference are drawn for �ABN = �ACN =
30, 40, 50, 60, 80, 100. For the reason of clarity , the data of

�F/nkBT are divided by various constants, 2×10−5, 5×10−6,
10−6, 2×10−7, 10−7, and 10−7, respectively. When �ABN= �ACN
is increased from 60 to 80, the shift angle of the stable mor-

phology goes down from about 112.5 degrees to about 90

degrees. When �ABN = �ACN is increased further to be 100,

the shift angle of the stable morphology stays at around 90

degrees, but the magnitude of �F becomes smaller. Actually,
for �ABN= �ACN= 80 and 100, the values of �F are very small.
However, when �ABN = �ACN is decreased, three-extremum

curves become two-extremum ones with the minimum at 180-

degree shift, and the magnitude of �F continuously increases
to the order of 10−4 for �ABN = �ACN = 30. To gain a quan-

titative picture of the magnitude, we introduce a quantity,

�F0,180/nkBT defined as the free energy difference between

the two morphologies with zero shift and 180-degree shift, to

do this measurement. The logarithm of �F0,180/nkBT is shown
for from �ABN= �ACN= 30 to 80 in Figure 5(b). The good linear

relation tells us that the magnitude of �F0,180/nkBT decreases
exponentially over the examined range of �ABN = �ACN � 80.

The expoenential tendency predicts that the free energy dif-

ference has become very tiny when �ABN = �ACN = 100. In

fact, the data of �F0,180/nkBT is negative with a absolute

value smaller than 10−9. In another word, the morphologies
with various shifts become indistinguishable if the free energy

difference vanishes.

After examining how the value of �ABN = �ACN influences the

dependence of relative stability of the morphology on the shift

angle, we turn to study the influence of varied �BCN by fixing

�ABN = �ACN. Similarly, the free energy differences with var-
ious shifts are present for �BCN = 40, 50, 60, 70, 80 when

�ABN= �ACN is fixed as 40 in Figure 6(a), and �F0,180/nkBT as

FIGURE 6 (a) The free energy difference as a function of the shift angle for �BCN = 40, 50, 60, 70, 80, and fixed �ABN = �ACN = 40. (b)
The free energy difference between the two morphologies of zero shift and 180-degree shift, �F0,180/nkBT , as a function of �BCN .
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FIGURE 7 The free energy difference as a function of the shift angle for different compositions and fixed �ABN = �ACN = �BCN =60. (a)
The A composition is fixed as fA =0.60, and two asymmetric compositions of B and C, (fB, fC) = (0.21, 0.19) and (fB, fC) = (0.22, 0.18),
are considered. (b) The asymmetry of B and C blocks is kept, and the compositions are (fB, fC) = (0.21, 0.21) and (fB, fC) = (0.22, 0.22).
As comparisons, the data of fA =0.6 and fB = fC =0.2 is shown in both (a) and (b).

a function of �BCN is present in Figure 6(b). In this series of

results, the morphology with 180-degree shift has always the

relative stability upon other morphologies, and �F0,180/nkBT
increases as �BCN increasing for fixed �ABN = �ACN. When we
compare the �F/nkBT curve of �ABN= �ACN= �BCN= 40 with

that of �ABN= �ACN= �BCN= 60 in Figure 3(a), we find that the

global minimum, which is located at about 112.5-degree shift

in the latter case, dispears in the former case. For gaussian

polymer chains, the entropic contribution usually becomes

more dominant over the internal interaction when the interac-

tion parameters decreases or when the temperature increases.

For �ABN = �ACN = �BCN = 40, the internal interaction, with

an opposite changing tendency to the entropic energy for

varied shift, is too weak to make the free energy difference

have another minimum besides that one at the 180-degree

shift. When �BCN is increased for fixed �ABN = �ACN = 40,

the stronger interaction between B and C blocks induces the

B/C domains along the direction of the lamellar alignment

(or x direction) to be stretched to reduce the B/C interfacial

energy, and as a consequence, the A-domain layer is com-

pressed because of the conserved volume per chain. Larger

interacting area per chain and shorter interacting distance

result in a larger effective interaction. This is the reason that

�F0,180/nkBT increases as �BCN increasing for fixed �ABN =
�ACN.

In the above paragraphs, the compositions of the three compo-

nents are fixed as fA = 0.6 and fB = fC = 0.2. Now we consider

the relative stability of the morphology for different composi-

tions. To keep the hierarchical lamellae as equilibrium phase,

we vary the compositions slightly by two ways. One way is

to introduce a small asymmetry to B/C blocks when fixing

fA = 0.6. Two group of volume fractions, (fB, fC) = (0.21, 0.19)

and (fB, fC) = (0.22, 0.18) are considered in our study. The

other way is to change the A composition when keeping the

symmetry between B and C blocks. The free energy differences

in the two cases for �ABN = �ACN = �BCN = 60 are plotted in

Figure 7(a) and (b), respectively. In Figure 7(a), the three-

extremum curve is changed to be the two-extremum curves

by the introduction of the small asymmetry of the compo-

sition, and the magnitude of the free energy difference is

increased significantly. During the phase separation between

B/C blocks, the composition asymmetry induces a sponta-

neous curvature which is unfavorable for chain stretching. In

subsequence, the B/C domain size is increased, and the A-

layer width is decreased for the volume-conservation reason.

The increased interacting area and decreased interacting dis-

tance account for the increment of the magnitude of the free

energy difference. In Figure 7(b), �F/nkBT for the composi-

tions of (fB, fC) = (0.21, 0.21) and (fB, fC) = (0.22, 0.22) as

well as (fB, fC) = (0.20, 0.20) are shown. It is revealed that

the increasing of B and C blocks changes hardly the minimal

position, but amplifies the magnitude of the whole curve. The

two results in Figure 7(a,b) indicate that existence of the min-

imum between zero and 180-degree shift is very sensitive to

the symmetry of the composition of the copolymer.

CONCLUSIONS

To summarize, we have studied the relative stability of the

hierarchical lamellar morphologies with various shifts formed

in ABC star triblock copolymers with fA = 0.6, and fB = fC = 0.2.

In general, the morphology with the largest shift (or 180-

degree) is the stable phase, and the free energy difference

among these morphologies with various shifts is very small,

especially when the interaction parameters satisfy the con-

dition of �ABN = �ACN ≥ �BCN. The stable morphology with
a shift different from the 180-degree has been observed in

this condition, such as, about 112.5-degree for �ABN= �ACN=
�BCN = 60, 90-degree for �ABN = �ACN = 80 (or 100) and

�BCN= 60. The morphologies with zero and 180-degree shifts

are centrosymmetric, whereas the others are noncentrosym-

metric. The magnitude of the free energy difference between

the two morphologies with zero shift and 180-degree shift,

�F0,180/nkBT , increases exponentially as �ABN= �ACN decreas-
ing for fixed �BCN. It can vary over a range of a few orders.

Varying of �BCN for fixed �ABN = �ACN can influence signif-

icantly the value of �F0,180/nkBT , too. However, the varying
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magnitude is much smaller. We have also investigated the

influencing of the three compositions on the relative stabil-

ity of these morphologies. Our results predict that it is more

possible to observe the morphology with 180-degree shift in

experiments as an exact symmetric composition is hard to be

obtained.

The star triblock copolymers have complex self-assembling

behaviors in bulk. Our careful calculations and analysis can

help us to understand the factors which influence the stability

of the hierarchical lamellae in theory. Though many experi-

ments have been carried to study their structure formations,

the observation of this hierarchical lamellae is still lacking in

neat star triblock copolymers. It is hoped that our theoreti-

cal predictions can be taken as a motivation to search these

different lamellae.
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